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Abstract
Feature-engineering-based machine learning mod-
els and deep learning models have been explored
for wearable-sensor-based human activity recog-
nition. For both types of methods, one crucial
research issue is how to extract proper features
from the partitioned segments of multivariate sen-
sor readings. Existing methods have different
drawbacks: 1) feature-engineering-based methods
are able to extract meaningful features, such as sta-
tistical or structural information underlying the seg-
ments, but usually require manual designs of fea-
tures for different applications, which is time con-
suming, and 2) deep learning models are able to
learn temporal and/or spatial features from the sen-
sor data automatically, but fail to capture statisti-
cal information. In this paper, we propose a novel
deep learning model to automatically learn mean-
ingful features including statistical features, tem-
poral features and spatial correlation features for
activity recognition in a unified framework. Ex-
tensive experiments are conducted on four datasets
to demonstrate the effectiveness of our proposed
method compared with state-of-the-art baselines.

1 Introduction
Human activity recognition is an important technique with
a wide range of real-world applications, e.g., assisted liv-
ing, personalized health monitoring, security and smart
homes [Janidarmian et al., 2017; Bulling et al., 2014; Lara
and Labrador, 2013]. The recognition of human activities has
generally been approached in two categories based on differ-
ent types of involved sensors, namely ambient-sensor-based
and wearable-sensor-based. The former utilizes devices fixed
in locations of interest, such as video cameras or WiFi ac-
cess points attached to a fixed desk or wall. The latter refers
to sensors attached to a human body [Chen et al., 2012]. In
this work, we focus on wearable-sensor-based activity recog-
nition scenarios since wearable on-body sensors alleviate en-
vironment constraints and are free from privacy issues (take
cameras as example, all the behaviours of participants are
recorded and are easily recognized by others, while signals

of wearables are not visible) [Yang et al., 2015]. In these
scenarios, the common practice is that the continuous multi-
variate time series data is partitioned into segments first, and
each segment is assigned a specific activity. Feature extrac-
tion is commonly conducted on each segment to extract dis-
criminative features. The extracted features are then fed into
a classifier or fully-connected layers to recognize different ac-
tivities [Hammerla et al., 2016].

Existing feature extraction approaches can be classi-
fied into two categories: feature-engineer-based and deep-
learning-based. The approaches of the former category
aim to extract various aspects of information underlying
each sensor-reading segment, such as statistical informa-
tion [Janidarmian et al., 2017], meta information, e.g., over-
all shape and spatial information [Lara and Labrador, 2013;
Hammerla et al., 2013; Lin et al., 2007]. These approaches
usually require domain knowledge to manually design proper
features for specific applications, which is labor-intensive and
time consuming. To overcome the limitations of feature-
engineering-based approaches, Qian et al. [2018] proposed
the SMMAR method to automatically extract all orders of
moments as statistical features by using kernel embedding
technique of distributions. However, SMMAR fails to extract
temporal and spatial information from the segments of sensor
readings, which is important for recognizing activities.

The approaches of the latter category aim to design deep
neural networks to extract temporal and/or spatial features
from the segments of sensor readings automatically [Wang
et al., 2017]. Different types of neural networks have been
proposed to extract different kinds of information [Ham-
merla et al., 2016]. Basically, deep feed-forward networks
(DNNs) are used to extract higher-level features without tak-
ing temporal or spatial information into consideration. Con-
volutional neural networks (CNNs) are used to extract lo-
cally translation invariant features with respect to the pre-
cise location or precise time of occurrence of certain pattern
within a data segment [Zeng et al., 2014; Yang et al., 2015;
Ignatov, 2018]. Recurrent neural networks (RNNs) are suit-
able for exploiting the temporal dependencies within the ac-
tivity sequence. The state-of-the-art for sensor-based activity
recognition are basically combinations of these three types
of base models [Morales and Roggen, 2016]. Though deep-
learning-based approaches are able to learn powerful fea-
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tures to represent temporal and/or spatial information under-
lying sensor data, they fail to capture statistical information,
such as different orders of statistical moments, which has
proven to be useful for activity recognition [Qian et al., 2018;
Qian et al., 2019].

In this paper, we propose a novel Distribution-Embedded
Deep Neural Network (DDNN) for wearable-sensor-based
human activity recognition. The main novelty of our net-
work lies in that we encode the idea of kernel embedding
of distributions into a deep architecture, such that besides
temporal and spatial information, all orders of statistical mo-
ments can be extracted as features to represent each segment
of sensor readings, and further used for activity classifica-
tion in an end-to-end training manner. Compared with the
SMMAR method [Qian et al., 2018], which also makes use
of the kernel embedding technique to extract statistical fea-
tures for sensor data, our proposed DDNN is capable of learn-
ing more powerful features beyond statistical features. In
addition, SMMAR assumes that all activities are segmented
beforehand, while DDNN relaxes the perfect-segmentation
assumption by simply using sliding windows, which makes
DDNN more practical for real-world scenarios. Moreover,
SMMAR uses a single kernel to embed distributions, which
may be sensitive to the parameter settings of the kernel, while
DDNN uses a deep neural network to approximate the feature
map of the kernel, which is more flexible as the parameters of
the deep neural network are learned from the data.

In summary, our contributions are two-fold:
• Our proposed DDNN is a unified end-to-end trainable

deep learning model, which is able to learn different
types of powerful features for activity recognition in an
automated fashion.
• Extensive experiments are conducted on several bench-

mark datasets to demonstrate the superior performance
of our proposed DDNN.

2 Related Work
Feature-engineering-based machine learning methods.
These methods include PCA, LDA, basis transform coding
(wavelet transform and Fourier transform) and handcrafted
statistical features of raw signals including orders of moments
(mean, variance, skewness, etc), median, etc [Janidarmian et
al., 2017]. SMMAR method [Qian et al., 2018] automat-
ically extracts all orders of moments as statistical features
by using kernel mean embedding technique. Besides statis-
tical features, several methods treat extra meta information
as extra structural features. For instance, ECDF method pre-
serves the overall shape and spatial information of time series
data [Hammerla et al., 2013]; SAX method transforms con-
tinuous data into symbolic representations [Lin et al., 2007].
Deep learning methods. Deep learning methods can sub-
stitute for the manual feature design and extraction proce-
dure. The first deep learning method on activity recogni-
tion applies Restricted Boltzmann Machines (RBMs) to com-
pare with manual features [Plötz et al., 2011]. CNNs are the
most widely used frameworks in this field [Zeng et al., 2014;
Yang et al., 2015; Ignatov, 2018]. Yang et al.[2015] cus-
tomized CNNs along temporal dimension of activity data

to extract salient patterns of sensor signals at different time
scales. Besides, temporal dependencies in time-series data
are proven to be beneficial for activity recognition as well.
DeepConvLSTM model [Morales and Roggen, 2016] applies
two Long Short-Term Memory (LSTMs) layers on top of the
abstract feature representations extracted by four convolu-
tional layers. There are also research works to jointly learn
shallow features by traditional methods and deep features by
deep models [Ravı̀ et al., 2017; Ignatov, 2018]. There are
also attempts of combinations of shallow classifiers with deep
learned features. Hammerla et al. [2016] provided system-
atic comparisons on the performance of state-of-the-art deep
learning methods with DNNs, CNNs and RNNs on activity
recognition problems, especially various LSTMs.
Statistical features. Kernel methods have been well stud-
ied during the past decades, with the ability to learn nonlin-
ear transformations of input data as implicit features, and of
learning nonlinear classifiers as well [Smola et al., 2007]. Re-
cently, Muandet et al. [2017] illustrated the power of feature
embedding on image classification, and Qian et al. [2018]
investigated the similar technique on wearable-sensor-based
activity recognition, with more reasonable and meaningful
explanations on the extracted features. Similar idea has also
been applied to the generative adversarial networks (GANs)
with a different motivation of matching statistical features to
enable the network to generate more realistic synthetic sam-
ples [Li et al., 2015; Li et al., 2017].

3 Preliminaries
The idea of extracting infinite number of statistical features
may sound counter-intuitive, thus here we briefly introduce
the kernel mean embedding technique [Smola et al., 2007;
Muandet et al., 2017; Qian et al., 2018].

Given a sample X = {xi}ni=1 drawn from a probability
distribution P, where X represents a set consisting of n el-
ements xi ∈ Rd×1. The technique of kernel embedding
for representing an arbitrary distribution is to introduce a
mean map operation µ(·) to map instances to a RKHS (Re-
producing Kernel Hilbert Space) H, and to compute their
mean in the RKHS as µP := µ(P) = Ex∼P[φk(x)] =
Ex∼P[k(x, ·)], where φk : Rd → H is defined by a kernel
k(·, ·). Here φk is a feature mapping function that extracts
high-dimensional or even infinite-dimensional features from
d-dimensional data space to Hilbert space H. If the condi-
tion Ex∼P(k(x,x)) < ∞ is satisfied, then µP is also an
element in H. It has been proven that if the kernel k(·, ·)
is characteristic, then the mapping µ : P → H is injec-
tive [Sriperumbudur et al., 2009]. The injectivity indicates
an arbitrary probability distribution P is uniquely represented
by an element in a RKHS through the mean map. In practice,
one can use an unbiased empirical estimation to approximate
the mean map µ̂P = 1

n

∑n
i=1 φk(xi) = 1

n

∑n
i=1 k(xi, ·).

Though in theory, the dimension of µ̂P is potentially in-
finite, by using the kernel trick, the inner product of two
probability distributions in a RKHS can be computed effi-
ciently through a kernel function associated to the RKHS,
〈µ̂Px

, µ̂Pz
〉 = k̃(µ̂Px

, µ̂Pz
) = 1

nxnz

∑nx

i=1

∑nz

j=1 k(xi, zj),
where k̃(·, ·) is a linear kernel defined in the RKHS, nx and
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nz are the sizes of the samples X and Z drawn from Px

and Pz , respectively. In general, k̃(·, ·) can be a nonlinear
kernel defined as k̃(µ̂Px

, µ̂Pz
) = 〈ψ(µ̂Px

), ψ(µ̂Pz
)〉, where

ψ(·) is the associated feature mapping of the nonlinear ker-
nel k̃(·, ·). These equations indicate that kernels can be ap-
plied on top of kernels. It is also possible to extract ex-
plicit low-dimensional feature maps z to substitute for the
above implicit features by Random Fourier Features [Rahimi
and Recht, 2007]: k(x,x′) = 〈φ(x), φ(x′)〉 ≈ z(x)>z(x′),
where the inner product of explicit feature maps can uni-
formly approximate the kernel values without the kernel trick.

4 The Proposed DDNN Model
4.1 The Overall Model
Activity recognition is challenging as it is affected by many
factors, i.e., dynamic spatial-temporal correlations and vary-
ing patterns of activities conducted by multiple participants.
Based on the above motivation, we design an end-to-end
trainable neural network structure for human activity recogni-
tion problem. Our proposed model has three main modules to
learn feature representations for human activity recognition:

• Statistical module f1: this module aims to learn all or-
ders of moments statistics as features in an automated
fashion.

• Spatial module f2: this module aims to learn correla-
tions among sensors placements.

• Temporal module f3: this module aims to learn temporal
sequence dependencies along the time scale.

By stacking the above learned features together and forming a
unified architecture, we can build a trainable model for activ-
ity recognition. The overall illustration of the proposed model
is shown in Figure 1.

In our problem setting of activity recognition, the streams
of multivariate sensor readings are partitioned by fixed-
size sliding window with length L. We randomly split
activities into training set {(Xi, yi)}ni=1, validation set
{(Xj , yj)}mj=1 and test set {Xt}pt=1, where each activity
Xi = [xi1 ... xiL] = [x1

i ... xd
i ]

T ∈ Rd×L, and yi ∈
{1 ... nc} with nc denoting the number of predefined activity
categories. Here each column xij ∈ Rd×1 is a vector of sig-
nals received from d sensors at j-th timestamp, and each row
(xr

i )
T ∈ R1×L represents the signals recorded by r-th sensor

within the current sliding window.
Note that in this work, we simply concatenate these three

modules’ learned features [f1(Xi), f2(Xi), f3(Xi)] before
feeding into fully-connected layers. However, it is possible to
explore more complex and interleaved ways to connect these
modules depending on different scenarios. For instance, one
possible choice is f1([f2(X), f3(Xi)]), with which statistical
features are learned on top of the features extracted by other
two modules. This is actually a generalized way of learning
features, i.e., [f2(X), f3(X)] is considered as a special type
of data transformation of raw data Xi, while f1(Xi) learns
features directly from raw data. It is also possible to build
a deeper model with these three modules as atom building
blocks.

Figure 1: Illustration of the proposed DDNN architecture. The in-
put to the network consists of a data sequence Xi = [xi1 ... xiL] =
[x1

i ... xd
i ]

T ∈ Rd×L extracted from d sensors and partitioned by
sliding window approach with length L. From left to right, there are
three modules for extracting spatial, temporal and statistical features
respectively. Note that the input data format for these modules are
different. Spatial correlations among sensors whose signals are rep-
resented as row vectors {(xr

i )
T }dr=1 are learned by LSTMs. Tem-

poral dependencies are extracted from column vectors {xj
i}

L
j=1 by

both LSTMs and CNNs (we will explain later why CNNs extract
temporal dependencies instead of spatial correlations). Statistical
module take the matrix form data Xi as inputs of autoencoder. All
the learned features are then concatenated into a single feature vec-
tor, which is input to the fully-connected layers.

4.2 Statistical Module
Inspired by SMMAR [Qian et al., 2018], we aim to learn sta-
tistical features automatically by a deep learning model. One
disadvantage of SMMAR is that the learned features are lim-
ited by a fixed Gaussian kernel k(x, x′) = exp(−γ‖x−x′‖2)
with fixed γ, hence parameter tuning of proper bandwidth for
kernel is required in advance. Here we aim to learn statisti-
cal features from multiple kernels without manual parameter
tuning. This statistical module can be seamlessly combined
with other modules to form a unified deep learning architec-
ture which can be trained and optimized.

First, we aim to design a neural network f1 to learn the
statistical feature mapping φf1(·) automatically, i.e.,

f1(Xi) = φf1(Xi). (1)

However, the desired φf1 takes the matrix as input, while φk
works for vectorial input. To address this issue, we take the
average of feature mapping within each sliding window as

φf1(Xi) =
1

L

L∑
j=1

φk(xij). (2)

Second, we expect f1 is able to learn the best kernel automat-
ically from different possible characteristic kernels k ∈ K.
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f∗1 (Xi) = max
f1

φf1(Xi) = max
k∈K

1

L

L∑
j=1

φk(xij). (3)

Note that the learned features f∗1 (Xi) are in vectorial form.
As mentioned in Section 3, the prerequisite of expressive fea-
ture extraction is the characteristic property of kernels, i.e.,
the feature mapping f1(·) should be injective (not necessar-
ily invertible). To make the neural network injective, there
should be another function or neural network f−11 such that
f−11 (f1(Xi)) = Xi for all possible Xi’s. Therefore, as sug-
gested in [Li et al., 2017], we utilize an autoencoder to guar-
antee the injectivity of the feature mapping.

To be specific, an autoencoder includes an encoder fe, and
a decoder fd, where the encoder is used to map the input se-
quence to a fixed-length vector, then the decoder is used to
unroll this vector to sequential outputs and try to reconstruct
the input data of the encoder. In our scenario, the encoder is
the desired f1 module, and fd = f−11 . Though both of our
proposed model and the model in [Li et al., 2017] utilize an
autoencoder to make sure the injectivity of neural networks,
the motivations are quite different. We utilize the autoen-
coder as feature learner for classifying activity classes, while
in their model, the autoencoder works for hypothesis testing,
i.e., to make generated synthetic samples as indistinguishable
from true samples as possible.

The standard loss function of the autoencoder tries to mini-
mize the reconstruction error `ae = ‖x−fd(fe(x̃))‖ between
inputs x and outputs x̃, but it is insufficient for statistical fea-
ture learning. We further use an extra loss function based on
MMD distance to force the autoencoder to learn good feature
representations of inputs:

MMDk(Xp,Xq) =

∥∥∥∥∥∥ 1

np

np∑
i=1

(φk(xi))−
1

nq

nq∑
j=1

(φk(xj))

∥∥∥∥∥∥
2

=

√
1

n2p

∑
i,i′

k(xi,xi′)−
2

npnq

∑
i,j

k(xi,xj)+
1

n2q

∑
j,j′

k(xj ,xj′),

where np and nq are the numbers of timestamps of two ac-
tivities Xp and Xq , respectively. The resultant MMD loss
function on the autoencoder is as follows:

`MMD(Xi,fd(fe(Xi)))=
1

L

∥∥∥∥∥∥
L∑

j=1

fe(xij)−fe(fd(fe(xij)))

∥∥∥∥∥∥
2

.

Note that by taking fe and fd to be the identity function,
`MMD is reduced to `ae, where the mean vector (1st order
moment) difference between inputs and outputs of the autoen-
coder is calculated. Our choices for fe and fd in the proposed
deep learning model aim to match higher order moments sta-
tistical features. Therefore, this loss function forces the hid-
den representations of autoencoder to successfully convey
sufficient information of desired statistics to the decoder.

4.3 Spatial Module
Convolutional layers in CNNs are firstly designed for the
image-based problems. The standard CNNs are able to ex-
tract spatial-invariant features with a kernel filter running

over the images or videos. However, the current so-called
CNNs for human activity recognition tasks are actually not
truly on spatial dependencies. Usually the wearable sensor
data is in 1-dimension, where the so-called spatial CNNs are
actually along the temporal aspect [Hammerla et al., 2016;
Morales and Roggen, 2016]. There are also attempts to force
the multiple 1-dimensional data of different sensor chan-
nels into a virtual image, then standard CNNs can be ap-
plied [Yang et al., 2015].

Our viewpoint of spatial correlations are different from the
previous work. We try to capture the spatial correlations be-
tween sensors attached to the human body. From our point of
view, the signals of a certain sensor are inevitably affected by
the attached locations on the human body or joints. Imagine a
participant is walking, with sensors attached to his upper arm,
lower arm and legs. It is common that when the right leg of
the participant is on the front, the right arms are waved to the
opposite direction at the same time. Also the movements of
upper arm and lower arm are constrained by the joints of the
human body. Therefore we aim to model such kinds of spa-
tial correlations of the sensors, which is usually ignored in the
literature. As illustrated in Figure 1, the input data Xi in the
sliding window is treated as d row vectors [x1

i ... x
d
i ]

T , each
of which associated to a single sensor. A LSTM is connected
with each sensor data, and hence the dependencies between
sensors are learned to form a spatial feature vector.

4.4 Temporal Module
In order to exploit the temporal dependencies within each ac-
tivity, we utilize both CNNs and LSTMs as building blocks
of temporal module. As discussed in previous subsection,
CNNs with 1-D filters are applied on each channel {xr

i }dr=1
of sensor data Xi. By applying the filter to go through dif-
ferent regions of the input, it is then able to detect the lo-
cal salience patterns of the signals. Note that CNNs are ap-
plied along the temporal dimension, thus it is able to learn
the temporal dependencies. Besides, LSTMs are connected
to temporal data {xij}Lj=1 to learn temporal information as
well. Specifically, we choose LSTMs instead of RNNs due
to the diminishing gradients problem. LSTMs are designed
to have more dynamic and flexible memory cells through gat-
ing mechanism, which enables LSTMs to learn temporal re-
lationships on longer time scales. The outputs of CNNs and
LSTMs are concatenated into a single vector to represent tem-
poral features.

5 Experiments
Dataset. We conduct experiments on four sensor-based ac-
tivity datasets. The overall statistics information of datasets
are listed in Table 1. The Daphnet Gait dataset (DG) [Bächlin
et al., 2010] corresponds to a medical application and records
activities from 10 participants affected with Parkinson’s Dis-
ease, aiming to detect freezing of gait incidents. The data is
segmented by sliding window of 1 second duration and 50%
overlap. The Opportunity dataset (OPPOR) [Chavarriaga et
al., 2013] comprises 17 mid-level gesture classes conducted
in an ambient-sensor home environment together with 19 on-
body sensors. These gestures are short in duration and non-
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repetitive. Null class data exists in the dataset indicating tran-
sitions of two adjacent activities. The UCIHAR dataset [An-
guita et al., 2012] collects six activities (walking, walking
upstairs, walking downstairs, sitting, standing, laying) car-
ried out with a group of 30 volunteers within an age range
of 19-48 years. The PAMAP2 dataset [Reiss and Stricker,
2012] includes 12 different physical activities (household ac-
tivities and exercise activities) which are performed by 9 sub-
jects wearing 3 inertial measurement units. These activities
are prolonged and repetitive, typical for systems aiming to
characterize energy expenditure.

5.1 Experimental Setup
All these datasets have class imbalance problem, especially
OPPOR and DG. Therefore, in our experiments, we set the
probability of an activity being chosen in a training epoch to
be the inverse of the number of the certain activity. We follow
the experimental setup in [Hammerla et al., 2016]. Micro-F1
(miF) and weighted macro-F1 (maF) are selected as perfor-
mance measure. 77 out of 113 features are used for OPPOR,
with run 2 from subject 1 as validation set, runs 4 and 5 from
subject 2 and 3 as test set and the rest as training set. Sliding
windows of 1 second duration with 50% overlap is applied.
For PAMAP2, 12 protocol activities are studied, with data
downsampled to 33Hz. Sliding window length is 5.12 sec-
onds with 1 second as step size. Runs 1 and 2 for subject 5
are used as validation set, and runs 1 and 2 for subject 6 are
used as test set, with the rest being training set. The raw data
of DG is downsampled to 32Hz as well. Sliding window du-
ration is 1 second with half overlap. We use subject 9’s first
run as validation set, subject 2’s runs 1 and 2 as test set with
the rest being training set. The UCIHAR has been prepro-
cessed and segmented by data provider beforehand, where the
raw data is randomly partitioned into two sets, where 70% of
the volunteers generated training data and 30% the test data.
The sensor signals were pre-processed by applying noise fil-
ters and then sampled in sliding windows of 2.56 second (128
readings). Data normalization is conducted on all datasets.
For our architecture, we utilize 4 linear layers with ReLU at-
tached after each linear layer as encoder and decoder’s archi-
tecture. Both LSTMs in spatial and temporal module have l
layers of LSTMs with h-dimensional hidden representations,
where l ∈ {1, 2, 3} and h ∈ {32, 64, 128, 256, 512, 1024}.
Four convolutional layers with filter size (1, 5) are utilized in
the temporal module, with ReLUs and max pooling layers at-
tached after each convolutional layer. All feature vectors are
concatenated into a single vector before feeding into three
fully-connected layers. The batch size is set to 64, and the
maximum training epoch is 100. Adam optimizer is used for
training with learning rate 10−3 and weight decay 10−3. All
experiments are run on a Tesla V100 GPU. 1

Baselines. We compare our proposed model with baseline
methods as well as state-of-the-art methods. Due to the fact
that feature-engineering-based machine learning methods are
hard to scale up, in this paper we mainly compare our pro-
posed DDNN model with deep learning based methods.

1Code of the proposed DDNN is available at https://github.com/
Hangwei12358/IJCAI2019 DDNN.

• DDNN−f1: the proposed deep model without the sta-
tistical module. This baseline is set to investigate the
efficacy of the statistical module.

• DDNN−f2: the proposed deep model without the spa-
tial module. This baseline is set to investigate the effi-
cacy of the spatial module.

• CNN Yang [Yang et al., 2015]: a state-of-the-art CNN-
based model with 3 convolutional layers. We follow the
architecture in the paper and reproduce the model.

• DeepConvLSTM [Morales and Roggen, 2016]: a state-
of-the-art model with 4 convolutional layers and 2
LSTM layers. We also follow the architecture and re-
produce the model.

• DNN: 5-layer linear transformation with ReLU activa-
tion function.

• CNN: 4-layer CNNs with kernel size (1, 5) with ReLU
activation function and max pooling layer attached to the
output of each CNN.

• LSTM: 2-layer LSTMs with the dimension of hidden
representation in the range {32, 64, 128, 256, 512}.
• LSTM-f, LSTM-S, b-LSTM-S: state-of-the-art LSTMs

variants to capture temporal sequences information. Re-
sults are directly from [Morales and Roggen, 2016].

5.2 Experimental Results and Analysis
The results of the proposed method and baselines on 4
datasets are listed in Table 2. The best performance for
each evaluation metric is highlighted in bold. Our proposed
DDNN has achieved the best performance on all datasets, ex-
cept for the maF of OPPOR. These results indicate that our
proposed model is capable of learning powerful various fea-
tures for classification of activity recognition with more dis-
criminative power.

Impact of spatial and statistical module. Remarkably, the
performances of DDNN are consistently better than those of
DDNN−f1 and DDNN−f2 on all datasets. This favorably
validates our motivation that statistical features and spatial
features are beneficial to the deep learning models besides
the widely used temporal features in existing literature.

Robustness of the proposed DDNN. One interesting find-
ing is that our proposed model is more robust than other base-
lines. For instance, LSTM-related methods are obviously
inferior on DG and UCIHAR, and CNN-based models are
much worse than other baselines in OPPOR. One possible
reason may lie in the unified framework of DDNN, where dif-
ferent aspects of features are learned together. It is reasonable
that the contributions of different features on the classifica-
tion performance are task-dependent, i.e., the importance of
statistical module f1 and spatial module f2 varies in datasets
since each dataset has unique characteristics on properties.

Parameters’ sensitivity. Another aspect of robustness is
found during parameter tuning, where DDNN is less sensi-
tive to the changes of parameters. For example, when we set
the number of LSTM layers to be {1, 2, 3}, and LSTMs hid-
den representation dimensions to be {32, 64, 128, 256, 512},
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Datasets # train # val. # test # sw # Feature # Class Frequency # Subjects
OPPOR 715,785 32,224 121,378 30 113 18 30 4
UCIHAR 941,056 NA 377,216 128 9 6 50 30
DG 312,970 37,122 30,188 32 9 2 100 10
PAMAP2 473,447 90,814 83,366 170 52 12 100 9

Table 1: The overall information of the four datasets. Note that “# train”, “# val.” and “# test” refer to total number of training, validation
and test samples, respectively.“#sw” denotes the sliding window length used in the experiments. UCIHAR is preprocessed and segmented
beforehand by the data provider, which does not contain validation set.

DG OPPOR UCIHAR PAMAP2
Methods miF maF miF maF miF maF miF maF
DDNN 92.59 91.61 83.66 86.01 90.53 90.58 93.23 93.38
DDNN−f1 91.38 90.67 81.27 84.51 89.96 89.93 87.49 86.84
DDNN−f2 89.67 88.97 77.96 82.27 88.60 88.58 89.37 89.43
CNN Yang 87.96 86.65 9.98 2.95 88.12 88.11 70.17 70.46
DeepConvLSTM 87.21 84.28 75.47 78.92 89.05 89.07 84.31 82.73
DNN 88.91 86.47 77.05 80.25 87.65 87.72 80.31 79.82
CNN 89.23 88.85 10.66 3.56 86.66 86.77 89.75 89.72
LSTM 88.34 86.93 63.17 69.92 74.52 74.75 90.38 90.29
LSTM-f∗ 67.3 - 67.2 90.8 - - 92.9 -
LSTM-S∗ 76.0 - 69.8 91.2 - - 88.2 -
b-LSTM-S∗ 74.1 - 74.5 92.7 - - 86.8 -

Table 2: Overall comparison results on the four datasets (unit: %). Note that the results of baselines with ∗ are directly copied from [Morales
and Roggen, 2016].

the performance difference of DDNN is only roughly several
percentage, while other models’ performance gap is larger.
We also investigate the dimensions of hidden representations
in the autoencoder of statistical module ranging from 0.5d to
10d with d indicating the number of dimensions of raw data.
Empirically, higher dimensional hidden representations actu-
ally hinder the performance of deep model, while the dimen-
sions lower than 4d does not affect the performance drasti-
cally. We also investigate the weights on the added loss func-
tion `MMD for statistical module. We conduct experiments
with various weights put on the loss function. As illustrated
in Figure 2, the performance is steady (ranging from 0.88 to
0.9) within the weight ranging from 10−4 to 101, but when the
weights are larger than 101, the performance degrades dras-
tically. The reason may be the large weights on the `MMD
leads to less contribution of the rest two modules (temporal
and spatial), which affects the final performance.

6 Conclusion and Future Work

In this paper, we propose a novel architecture for wearable-
sensor-based activity recognition tasks. Our proposed DDNN
model is able to automatically learn three types of features:
1) statistical features, 2) spatial correlations among sensors,
and 3) temporal features. Extensive experiments with anal-
ysis are conducted to compare with state-of-the-art methods.
Experimental results demonstrate the superior efficacy of the
proposed model. In the future, we plan to extend DDNN to
semi-supervised setting where the number of labeled training
data is limited.
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Figure 2: Illustration of performance difference with different
weights put on the loss function `MMD.
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Gerhard Tröster, José del R. Millán, and Daniel Roggen.
The opportunity challenge: A benchmark database for
on-body sensor-based activity recognition. Pattern
Recognition Letters, 34(15):2033–2042, 2013.

[Chen et al., 2012] Liming Chen, Jesse Hoey, Chris D. Nu-
gent, Diane J. Cook, and Zhiwen Yu. Sensor-based activity
recognition. IEEE Trans. Systems, Man, and Cybernetics,
Part C, 42(6):790–808, 2012.

[Hammerla et al., 2013] Nils Y. Hammerla, Reuben
Kirkham, Peter Andras, and Thomas Ploetz. On preserv-
ing statistical characteristics of accelerometry data using
their empirical cumulative distribution. In ISWC, pages
65–68, 2013.

[Hammerla et al., 2016] Nils Y. Hammerla, Shane Halloran,
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Morales and Daniel Roggen. Deep convolutional and
LSTM recurrent neural networks for multimodal wearable
activity recognition. Sensors, 16(1):115, 2016.

[Muandet et al., 2017] Krikamol Muandet, Kenji Fukumizu,
Bharath K. Sriperumbudur, and Bernhard Schölkopf. Ker-
nel mean embedding of distributions: A review and be-
yond. Foundations and Trends in Machine Learning, 10(1-
2):1–141, 2017.
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